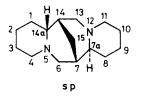
Synthesis of α -, γ -Phosphorus Functionalized Alkyl Lithium Species; X-Ray Structures of $[{Li(L)(CH_2PMeR)}_2] [L = NNN'N'-tetra$ $methylethylenediamine (tmen), R = Me or Ph; L = (-)sparteine, R = Ph] and <math>[Li(tmen){CH(SiMe_3)C_6H_4PPh_2-o}]^{\ddagger}$


Lindsay T. Byrne, Lutz M. Engelhardt, Geraldine E. Jacobsen, Wing-Por Leung, Rocco I. Papasergio, Colin L. Raston, **† Brian W. Skelton, Paul Twiss, and Allan H. White * School of Chemistry, The University of Western Australia, Nedlands, Western Australia 6009, Australia

 $[\{Li(L)(CH_2PMeR)\}_2]$ [L = tetramethylethylenediamine (tmen), R = Me (1) or Ph (2); L = (-)sparteine (sp), R = Ph (3)], prepared by treating the appropriate phosphine with LiBuⁿ(L) in hexane or diethyl ether, are dimeric in the solid. The phosphinomethyl ligands bridge the two lithium atoms as part of six-atom heterocycles; Li–C,P 2.14₅, 2.60₄; 2.1₄, 2.6₄; 2.2₀, 2.7₂ Å, respectively; (2) and (3) are homochiral and thus have a *meso* configuration. In benzene (1), (2), and [Li(tmen)(CH₂PPh₂)] (5), are monomeric (cryoscopy), and ⁷Li–³¹P coupling only below *ca*. –70 °C for (1)–(3) and (5) in toluene (1:1 doublet, ⁷Li; 1:1:1:1 quartet, ³¹P, J_{LiP} 44.0–53.4 Hz) is consistent with the presence of symmetrical dimers of the type found in the solid for (1)–(3). [Li(tmen){CH(SiMe₃)C₆H₄PPh₂-o}], (4), similarly prepared, has the lithium as part of a chelate ring in the solid, binding through the *inso* carbon and P¹¹¹ centre: Li–C, P 2.25(1), 2.65(1) Å. Trilithio

in the solid, binding through the *ipso* carbon and P¹¹¹ centre; Li–C,P 2.25(1), 2.65(1) Å. Trilithio species based on $P(C_6H_4CHR^-)_3$ (R = H or SiMe₃) are generated *via* metallation using LiBuⁿ(tmen). Treating the monolithio species derived from $P(O)Me_2Ph$ and LiBuⁿ(sp) with Etl yields $P(O)MePhPr^n$ of 14% estimated optical purity.

Phosphorus(III) functionalized alkyl ligands form a diverse range of metal complexes possessing unusual properties. Our interests centre on zirconium(III,IV) chemistry,^{1,2} and complexes. of lithium² which is the theme of this paper. Lithium to phosphorus(III) bonding forms only when the P centre is part of an anionic group as in phosphides and related species,^{3,4} P^{III} functionalized alkoxides⁵ and alkyls,^{2,4,6,7} and anionic phosphines, *e.g.* PPh₂CHPPh₂⁻ (ref. 8) and (PMe₂CH₂)₂AlMe₂⁻ and PMe₂CH₂AlMe₃⁻ (ref. 9).

While the metallation of PMeRR'¹⁰ (R = R' = H, R = R' = Ph, and R = H, R' = Ph) using various lithium reagents is well documented ^{11,12} little is known about the nature of the products. Herein we report the structural characterization (X-ray) of [{Li(tmen)(CH₂PMe₂)}₂] (1) (tmen = NNN'N'-tetramethylethylenediamine), previously reported briefly,² and [{Li-(L)(CH₂PMePh)}₂] [L = tmen (2) or (-)sparteine (sp) (3)], and molecular weight determination and variable-temperature ⁷Li and ³¹P n.m.r. on (1), (2), and the related compound [{Li(tmen)(CH₂PPh₂)}₂] (5). Sparteine and its I.U.P.A.C. num-

† Present address: School of Science, Griffith University, Nathan, Queensland 4111, Australia.

bering scheme (as a dodecahydromethanodipyridodiazocine) is shown below.

As part of a general study on phosphorus functionalized alkyls we also include (i) the synthesis, via metallation, and structure of [Li(tmen){CH(SiMe₃)C₆H₄PPh₂-o}] (4), undertaken to determine the effect of positioning phosphorus γ rather than α to the *ipso* carbon, and because of the general interest in the structures of organolithium species^{13,14}; (ii) the trimetallation of P(C₆H₄CH₂R-o)₃ (R = H or SiMe₃); and (*iii*) an investigation of asymmetric monometallation of P(O)Me₂-Ph using LiBuⁿ(sp). To our knowledge lithiation using this reagent is restricted to dilithiation of an amino-substituted ferrocene (3% optical yield)¹⁵ and 2,2',6,6'-tetramethylbiphenyl (40% optical yield),¹⁶ although there are several complexation studies of sp with organolithium reagents.¹⁷

Carbanions can be useful synthetically in a variety of ways. Notable examples akin to the present study include: reagents (1) and (5) with O=CBu¹₂ yield directly the hindered alkoxide lithium complexes [$\{Li(\mu-OCBu^{1}_{2}CH_{2}PRR')\}_{2}$];⁵ and (1)—(4) and related complexes, *e.g.* [$\{Li(tmen)\}\{CH_{2}C_{6}H_{4}PPh_{2}-o\}$],¹⁸ are useful alkyl transfer reagents for the synthesis of Main Group derivatives ^{9,10,19} and transition-metal complexes.^{1,2,20}

Results and Discussion

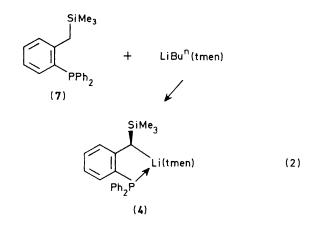
Syntheses.—Monolithiations of PMeRR' (R = R' = Ph; R = Me, R' = Ph) in high yield using LiBuⁿ(tmen) are documented but not data on the derived products [equation (1)];¹² these are included herein. The corresponding metallation of PMe₃ using the same reagent is new; the product, (1), was isolated in 89% yield as a colourless crystalline solid which has high hydrocarbon solubility. Other methods of lithiation of PMe₃ include the use of LiBu^t, and LiBuⁿ in diethyl ether where the phosphine is bound to nickel.²¹ Treatment of PMe₂Ph with LiBuⁿ(sp) in diethyl ether, rather than hexane because of solubility problems, yielded (3), as a colourless solid although in modest yield, *ca.* 40%.

⁽Dimethyl- or methylphenyl-phosphinomethyl)(NNN'N'-tetramethylethylenediamine)lithium, (methylphenylphosphinomethyl)[(-)sparteine]lithium, and [o-diphenylphosphinophenyl(trimethylsilyl)methyl](NNN'N'-tetramethylethylenediamine)lithium.

Supplementary data available: see Instructions for Authors, J. Chem. Soc., Dalton Trans., 1989, Issue 1, pp. xvii-xx.

$$PMeRR' + LiBu^{n}(L) \xrightarrow{2} Udati, \frac{1}{2} [\{Li(L)(CH_{2}PRR')\}_{2}] \quad (1)$$

$$L = tmen$$


$$R = R' = Me (1), R = Me, R' = Ph (2), R = R' = Ph (5)$$

$$L = sp$$

$$R = Me, R' = Ph (3)$$

butona . .

Metallation of $MeC_6H_4PPh_2-o$ using $LiBu^n$ (tmen) has also been reported but the product [Li(tmen)($CH_2C_6H_4PPh_2-o$)], (6), was not characterized.¹⁸ Quenching with SiMe₃Cl gave $CH_2(SiMe_3)C_6H_4PPh_2-o$, (7), which rapidly deprotonated with the same metallating reagent yielding (4), equation (2).

The above organolithium compounds were isolated as crystalline solids and characterized using ¹H, ¹³C, ⁷Li, and ³¹P n.m.r. spectroscopy, cryoscopy, X-ray structure determinations for (1)—(4) (see below), and for (4) and (6) by the formation of SiMe₃Cl derivatives, *viz.* CH(SiMe₃)₂C₆H₄PPh₂-*o* (8) and CH₂(SiMe₃)C₆H₄PPh₂-*o* (7), respectively [equation (2)].

Treatment of $P(C_6H_4Me-o)_3$ with ca. 3.3 mol equivalents of LiBuⁿ(tmen) gave a red viscous oil which failed to crystallize and accordingly was treated with SiMe₃Cl yielding $P(C_6H_4$ - $CH_2SiMe_3-o_{3}$ (9), isolated in 76% yield thus demonstrating the formation of tricarbanions [equation (3)]. Compound (9) also gave tricarbanions under the same conditions, which is not surprising given the expected increase in thermodynamic acidity of the methyl group on attaching polarizing silicon centres. Again a red oil was obtained. This yielded the corresponding hexakis(trimethylsilyl) compound, $P[C_6H_4CH(SiMe_3)_2-o]_3$, (10), on treatment with SiMe₃Cl in ca. 62% yield [equation (3)]. The facile generation of tricarbanions is noteworthy; there are only a few of them (or higher charged carbanions) in the literature and reagents more reactive than LiBuⁿ(tmen) are usually required, e.g. LiBun-KOBut (ref. 22). Compounds (7)-(10) have potential as highly hindered phosphines. They were characterized using n.m.r. spectroscopy; for (8) and (10) the unique methine proton resonance appears as a doublet $(J_{PH}, 7)$ Hz), probably via coupling to phosphorus. The steric crowding forces this proton into close proximity to the P^{III} centre.

$$P(C_{6}H_{4}CH_{2}R-o)_{3} + 3.3LiBu^{n}(tmen) \longrightarrow$$

$$P(C_{6}H_{4}CHRLi-o)_{3} \quad (3)$$

$$R = H \text{ or SiMe}_{3}$$

Selective asymmetric $-CH_3$ metallation of PMe_2Ph using LiBuⁿ(sp) is possible, especially noting that the product, (3), in the solid is comprised of homochiral dimers. We sought unsuccessfully to explore this by treating (3) with various electrophiles. However, the corresponding phosphine oxide, (11), prepared in the same way met with some success; treat-

ment of (11) with EtI yielded P(O)MePhPrⁱ [equation (4)] in good yield, optical purity *ca*. 14% based on an optical rotatory power of
$$-2.9^\circ$$
, *cf.* -21.2 for 100% optical purity.²³

$$P(O)Me_{2}Ph \xrightarrow{\text{LiBu}^{o}(sp)} [Li(sp)\{CH_{2}P(O)MePh\}] \xrightarrow{\text{Etl}} P(O)MePhPr^{i} \quad (4)$$
(11)

Solution Structures.—In the solid (1) and (2) [and (3)] are dimeric and adopt either chair or boat conformations (see below), but in benzene at *ca*. 5 °C and *ca*. 0.5 mol dm⁻³ they and (5) are monomeric (cryoscopy). At this temperature no ⁷Li-³¹P coupling was evident which suggests that the monomeric species present possess lithium bound to only the *ipso* carbon of the hydrocarbyl group and they are co-ordinatively unsaturated. It is noteworthy that the *ipso*-carbon protons in (1)—(3) and (5) couple to phosphorus, but not to Li as in (4) and (11) which is typical of organolithium species,²⁴ and the ⁷Li chemical shifts²⁵ and associated relaxation times, $T_1^{24.26}$ (measured by the inversion–recovery pulse method),²⁷ are in the range established for a variety of organolithium reagents.

⁷Li-³¹P coupling in (1)--(3) and (5) was only present below ca. -70 °C, with each lithium coupled to one phosphorus centre (1:1 doublet) and vice versa (1:1:1:1 quartet), the J_{LiP} values being 53.4, 49.3, 44.0, and 47.3 Hz respectively which are within the limits found for a variety of compounds.^{3a,28} The coupling supports the presence of dimers with Li-P bonding, presumably via association as in the solid state. A feature of the ⁷Li n.m.r. spectra is that there is no simple coalescence pattern; lowering the temperature results in reduction in peak height as the doublet starts to appear. This is consistent with a temperature-dependent equilibrium between monomeric and dimeric species, equation (5), with lower temperatures favouring dimer formation.

$$2\text{ELi(L)(CH}_{2}\text{PRR'}) = RR'P PRR'$$
(5)

If there are dimeric species at ca. -70 °C for (2), and (3), then only one of two possible isomers are present, most likely the same as in the solid, *viz.* where the two P^{III} centres in each molecule have the same chirality. The relative order of J_{LiP} and ³¹P chemical shifts reflect the Lewis basicity of the P^{III} centres, (1) > (2) > (5), as do the Li-P distances in (1) and (2), see below.

X-Ray Structures.—Results of the structure determinations of (1)—(4) are given in Tables 1—7 and Figures 1—4. Complexes (1) and (3) are dimeric with the $-CH_2PRR'$ moieties bridging successive lithium centres through the *ipso* carbon and P^{III} atoms as part of six-atom heterocycles [equation (5)]. The asymmetric units comprise two halves of two independent molecules in (1) and (3), the other halves being generated by inversion centres and two-fold axes respectively, or a complete dimer in (2) of approximate C_2 symmetry. Compound (4) crystallizes as discrete molecules in which the carbanion group acts as a chelate through the *ipso* carbon and the P^{III} centres, the asymmetric unit being one molecule. One OEt₂ molecule of crystallization per dimer is found in (3) and is rapidly lost *in vacuo*.

The lithium environments in all four compounds are tetrahedral as is common for a variety of organolithium reagents. While (1)—(3) are similarly dimeric the geometries around the lithium centres differ significantly in several respects. The Li–P distances of 2.60_4 , (1), 2.6_4 , (2), and 2.7_2 Å, (3) (mean) reflect the

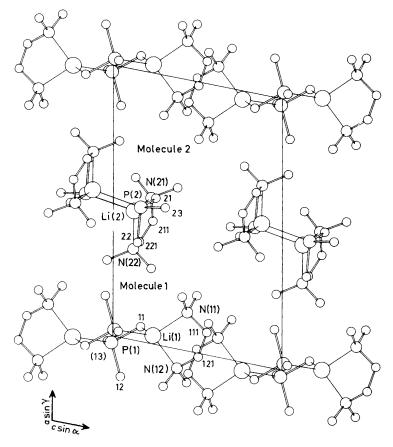


Figure 1. Unit-cell contents of (1) projected down b; atoms have arbitrary radii

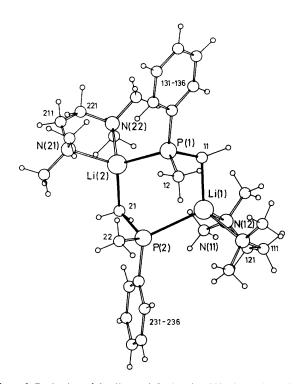


Figure 2. Projection of the dimer of (2) showing 20% thermal envelopes for the non-hydrogen atoms; hydrogen atoms have arbitrary radii of 0.1 Å

107

expected greater donor property of the P^{III} centre in -CH₂- PMe_2 relative to $-CH_2PPhMe$. Compensating seemingly tighter Li-P bonding in (1) is weaker Li-N bonding, 2.20 cf. 2.16 in (2) and 2.1_4 Å in (3). There are no meaningful variations in Li,P to ipso-carbon distances. Angular variations are more pronounced and presumably are in consequence of different ring conformations, most likely arising from different steric constraints of the anions and/or tertiary amines. All molecules in (1) are in a chair conformation whereas in (2) and (3) they are nearer the boat conformation with phenyl groups in equatorial positions and the methyls axial, but splayed apart, most likely because of non-bonding interactions. In (3), the 'prows' of the boat are phosphorus atoms in molecule 1 but carbon atoms in molecule 2. [The chirality of the P^{III} centres present in dimers of (2) and (3) are the same, viz. the molecules are meso isomers.] The conformation in the related compound [Li(tmen){(PMe₂- $CH_2_2AlMe_2$] (12) is of the pseudo-envelope type.⁹ Interestingly the dimeric molecules $[{Li(tmen)(CH_2SR)}_2](R = Me or$ Ph) have different structures.¹⁴ For R = Ph there are six-atom rings with the lithium bridging the carbanion centres and the functional group, as in (1)–(3), whereas for R = Me dimers with classical electron-deficient bonding prevail, (13).

The bridging mode of the α -P^{III} functionalized alkyls found in (1)—(3) appears to be the preferred bonding mode for lithium, at least in the solid, and other Main Group metals,^{9,19b} and also the preferred mode for heavier Group 5 (=15) analogues of $-CH_2PRR'$ with lithium.²⁹ Transition-metal complexes on the other hand can display bidentate bonding or the bridging mode, *e.g.* in [{Ni(η -C₅H₅)(CH₂PPh₂)}₂].³⁰ Substitution at the *ipso* carbon appears to yield complicated structures with lithium, *e.g.* (14) for alkyl groups,⁷ and (15) (thf = tetrahy-

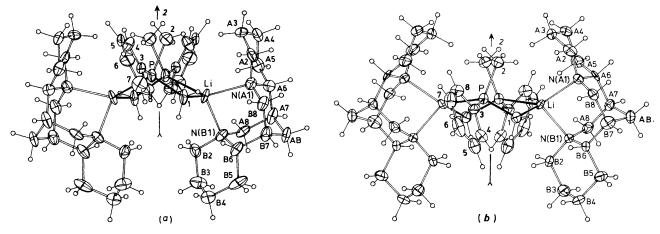


Figure 3. Projections of (3), molecules 1 (a) and 2 (b); details as for Figure 2

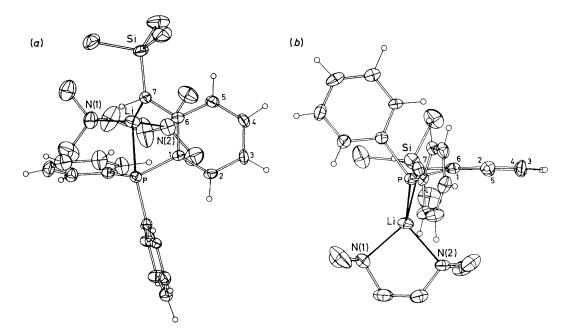
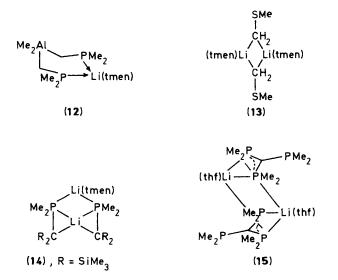



Figure 4. Projections of the molecules of (4) (a) normal to the ligand aromatic planes and (b) through C(1)-C(6); details as for Figure 2

drofuran) for $-PR_2$ groups.⁶ For the latter Li····P interactions can be at the expense of Li ····C interactions, *e.g.* in [(Li(tmen){(PPh₂)₂CH}].⁷ A similar parallel has recently been shown for lanthanum complexes of C(PPh₂)₃^{-.31}

The Li···P distances in (1)—(4) lie within the values established for tertiary phosphines, viz. 2.50—2.68 Å.⁵⁻⁸ The lowest distance being in the P^{III} functionalized alkoxide complex $[{Li(\mu-OCBu'_2CH_2PMe_2)}_2].^5$ Li···P distances in phosphido³ and related anionic ligand complexes, e.g. [{Li-(tmen)}_3P_7]³² can be slightly shorter, presumably because of Coulombic attraction; the lowest value is 2.44(2) Å.^{3e} The Li-N distances in the four compounds are unexceptional as are the geometries of the Li(tmen)⁺ sections. The P-CH₂ distances in (1)—(3) are much shorter than the

The P-CH₂ distances in (1)--(3) are much shorter than the P-CH₃ or P-C(Ph), 1.75_3 (1), 1.74_3 (2), and 1.7_8 Å (3) *cf. ca.* 1.85 Å. This can be viewed as arising from in part the stabilizing influence of phosphorus by polarization.^{13c} Alternatively, each phosphorus can be considered as a four-co-ordinate phosphonium centre and the P-CH₂ distance diminished by its ylide character. The computed Li···P in LiCH₂PH₂, 1.944 Å, is

Table 1. Non-hydrogen atom co-ordinates for (1)

	Molecule $l = 1$			Molecule $l = 2$		
Atom	x	у	Z	x	y	z
Li(/)	0.031 3(4)	0.127 7(6)	0.236 0(6)	0.476 0(4)	0.882 7(6)	0.121 9(7)
N(/1)	0.1420(2)	0.300 9(3)	0.439 0(4)	0.537 6(2)	0.782 7(3)	0.223 1(3)
C(/11)	0.082 5(5)	0.336 9(7)	0.554 5(6)	0.452 4(5)	0.678 9(6)	0.233 5(8)
C(l12)	0.211 1(4)	0.259 5(5)	0.495 0(7)	0.600 5(4)	0.725 9(6)	0.131 5(6)
C(13)	0.195 3(5)	0.414 5(6)	0.408 1(7)	0.593 8(4)	0.881 5(5)	0.379 4(5)
N(12)	-0.0712(2)	0.184 2(3)	0.378 6(4)	0.335 0(2)	0.732 9(3)	0.118 4(4)
C(l21)	-0.0136(5)	0.311 2(6)	0.503 9(7)	0.365 6(5)	0.645 3(7)	0.154 3(12)
C(122)	-0.1168(4)	0.082 1(5)	0.435 5(6)	0.277 0(4)	0.785 5(5)	0.224 3(7)
C(l23)	-0.1483(4)	0.198 5(7)	0.298 1(7)	0.275 6(4)	0.655 7(7)	-0.0353(6)
P(1)	-0.02498(7)	-0.192 48(9)	-0.008 55(10)	0.494 74(7)	1.181 70(9)	0.161 66(10)
C(/1)	0.054 8(3)	-0.0600(3)	0.162 8(4)	0.539 5(3)	1.101 3(4)	0.250 9(4)
C(l2)	-0.1442(3)	-0.2209(5)	0.044 6(6)	0.362 2(3)	1.101 8(5)	0.142 9(6)
C(l3)	-0.0216(3)	-0.3579(4)	-0.0318(5)	0.510 6(4)	1.354 6(4)	0.306 4(5)

Table 2. Non-hydrogen atom co-ordinates for (2)

	Section $l = 1$			Section $l = 2$		
Atom	x	y y	z	x	y	z
Li(/)	0.222 7(8)	0.174 2(10)	0.255 5(13)	0.292 1(8)	0.461 3(9)	0.108 1(12)
N(/1)	0.139 7(5)	0.007 6(5)	0.257 7(8)	0.286 6(7)	0.588 7(7)	-0.0327(10)
C(/11)	0.194 2(8)	-0.0477(8)	0.349 0(12)	0.347 4(11)	0.689 9(12)	0.052 3(19)
C(/12)	0.063 8(7)	0.019 6(8)	0.321 4(12)	0.314 2(8)	0.554 1(9)	-0.1682(12)
C(/13)	0.1133(7)	0.060 9(8)	0.114 0(10)	0.202 5(9)	0.613 0(10)	-0.0572(14)
N(/2)	0.320 8(4)	0.110 3(6)	0.372 8(7)	0.382 5(5)	0.601 3(7)	0.259 1(9)
C(121)	0.284 2(8)	-0.0102(10)	0.355 0(12)	0.392 2(11)	0.690 9(12)	0.181 5(17)
C(122)	0.334 0(6)	0.165 0(8)	0.522 9(9)	0.357 7(8)	0.639 2(9)	0.395 8(12)
C(/23)	0.403 0(6)	0.126 1(10)	0.324 9(10)	0.462 6(8)	0.566 5(10)	0.286 7(16)
P(l)	0.159 7(1)	0.406 8(2)	0.238 3(2)	0.267 7(1)	0.191 8(2)	-0.0057(2)
C(/1)	0.199 0(5)	0.333 3(6)	0.367 3(7)	0.347 4(5)	0.321 2(6)	0.033 3(8)
C(l2)	0.060 6(5)	0.303 3(6)	0.139 9(8)	0.190 7(5)	0.216 0(7)	-0.1537(8)
C(l31)	0.106 1(5)	0.518 3(6)	0.318 4(8)	0.303 4(6)	0.070 6(6)	-0.1112(7)
C(132)	0.120 3(5)	0.556 8(7)	0.468 0(9)	0.391 0(6)	0.077 0(6)	-0.099 6(8)
C(133)	0.081 6(5)	0.640 4(8)	0.530 9(9)	0.423 6(6)	-0.0107(9)	-0.169 9(10)
C(134)	0.027 8(7)	0.689 6(7)	0.448 4(13)	0.370 0(9)	-0.105 9(9)	-0.254 8(11)
C(135)	0.012 3(6)	0.654 1(8)	0.301 5(13)	0.281 7(8)	-0.1148(8)	-0.2702(9)
C(136)	0.051 3(6)	0.569 6(7)	0.236 0(8)	0.249 1(5)	-0.027 5(8)	-0.197 8(9)

much longer than in (1)—(3), as is the distance for the bidentate structure, $LiCH_2PH_2$; ^{13c} the large stabilising effect of $-PH_2$ is thought to be nearly eliminated by the electrostatic stabilization of the anion lone pair by the lithium. The P–C distance in (4) for the *o*-substituted ring, 1.820(7) Å, is slightly less than for the phenyl groups, 1.83₆ Å, in accordance with some delocalization of charge onto the ring; the arguments for the shortening then follow as for (1)—(3).

We now turn to a discussion of the Li \cdots C interactions. In (1)—(3) the associated distances are rather short and comparable to those in [{Li(tmen)(CH₂SPh)}₂],¹⁴ 2.131(4) Å, and other four-co-ordinate (or lower) structures devoid of electrondeficient bonding and where a polarizing group is attached to the *ipso* carbon, *e.g.* 2.12(2) Å in [Li(thf){C(SiMe₂Ph)₃]³³ and 2.13(5) Å in [Li(pmdien){CH(SiMe₃)₂}] (pmdien = NNN'N""Pentamethyldiethylenetriamine);³⁴ the Li \cdots C distances in (15) are much longer than in (1)—(3), 2.290(4) Å, presumably due to the greater number of Li-ligand interactions. (In general lithium prefers to interact simultaneously with as many atoms as possible.¹³) In compound (14) the Li–C distances associated with electron-deficient bonding are also longer (2.24₀ Å).¹⁰

The *ipso* carbon in (4) is almost trigonal planar (Figure 4) [cf. pyramidal in (1)-(3)] as is typical of benzyl-lithium

compounds where the *ipso* carbon bears a silyl group. The Li–C distance [2.25(1) Å] compares with 2.26(1) Å in [Li-(pmdien){CH(SiMe_3)C₆H₄Me-o}],³⁵ a structure which relates to (4) in having three neutral donor groups on lithium. Structures with two such groups possess shorter Li–C distances, *e.g.* 2.2₁ Å in [{Li(tmen)}₂{(2-CHSiMe₃C₆H₄)₂}],³⁶ and 2.10(1) and 2.14(1) Å for the *para*- and *meta*-isomers of [{Li(tmen)}₂{(CHSiMe₃)₂C₆H₄}]³⁷ but these have additional Li to carbanion contacts to the adjacent ring carbon and in some cases its nearest neighbour at *ca.* 2.3–2.7 Å. Both the *ipso* carbon–ring carbon distance of 1.43(1) Å and the apparent *sp*² hybridization of *ipso*-carbon distances by *ca.* 0.05 Å which can be attributed to the high polarizability of silicon.^{13c}

Experimental

Materials and Methods.—All the lithium compounds are extremely air- and moisture-sensitive and were handled under an argon atmosphere or *in vacuo* using standard Schlenk techniques. Solvents were dried over and distilled from sodium– benzophenone (diethyl ether), Na (benzene and toluene), LiAlH₄ (pentane and thf), or CaH₂ (hexane) under a dinitrogen atmosphere prior to use.

* Defines

	Molecule 1			Molecule 2		
Atom	x	у	Z	x	y	Z
Li	0.923 0(8)	0.358(2)	0.880 2(10)	0.537 9(8)	0.343 1(17)	0.632 5(10
Phosphine	e ligand					
P	1.067 6(2)	0.4411(-)*	0.982 5(2)	0.578 9(1)	0.320 8(3)	0.491 6(2)
C(1)	1.014 9(5)	0.351 9(13)	0.901 0(6)	0.588 8(5)	0.395 1(11)	0.578 1(7
C(2)	1.034 0(6)	0.588 5(13)	0.948 1(8)	0.606 6(5)	0.174 7(11)	0.531 4(8
C(3)	1.136 1(5)	0.472 2(11)	0.978 0(6)	0.640 8(5)	0.361 5(10)	0.476 3(7)
C(4)	1.168 2(6)	0.568 5(14)	1.003 9(7)	0.665 7(5)	0.469 1(12)	0.499 4(7)
C(5)	1.218 5(5)	0.586 5(13)	0.999 2(7)	0.712 1(6)	0.508 9(13)	0.487 8(8)
C(6)	1.237 5(6)	0.507 7(13)	0.965 1(9)	0.730 2(5)	0.434 8(16)	0.449 1(7)
C(7)	1.206 1(6)	0.406 8(16)	0.940 5(10)	0.702 7(6)	0.327 1(16)	0.423 9(8)
C(8)	1.153 3(6)	0.387 5(12)	0.946 8(8)	0.658 9(5)	0.289 2(11)	0.434 7(8)
Sparteine	ligand					
N(A1)	0.855 7(4)	0.401 4(9)	0.754 9(5)	0.586 9(4)	0.240 5(8)	0.737 9(5)
C(A2)	0.869 1(5)	0.517 1(12)	0.740 3(7)	0.598 9(6)	0.127 0(11)	0.718 1(8
C(A3)	0.855 2(7)	0.610 2(11)	0.786 0(8)	0.542 5(6)	0.0625(12)	0.661 6(7
C(A4)	0.791 5(6)	0.598 7(13)	0.767 5(7)	0.5003(7)	0.0503(12)	0.693 4(8
C(A5)	0.779 1(6)	0.476 1(13)	0.776 3(8)	0.491 0(6)	0.169 9(12)	0.721 7(8)
C(A6)	0.790 7(5)	0.3912(11)	0.728 8(7)	0.553 2(5)	0.226 8(10)	0.778 0(6)
C(A7)	0.773 8(5)	0.268 7(13)	0.730 1(7)	0.546 3(5)	0.3435(11)	0.813 6(6)
C(A8)	0.809 3(5)	$0.208 \ 9(11)$	0.815 0(7)	0.510 5(5)	0.435 4(11)	0.752 2(7)
N(B1)	0.875 8(4)	0.195 0(9)	0.851 5(5)	0.538 0(4)	0.477 4(8)	0.707 5(5)
C(B2)	0.907 0(6)	0.134 7(12)	0.929 7(7)	0.502 4(5)	0.569 4(11)	0.651 2(6
C(B3)	0.898 1(7)	0.004 5(13)	0.926 5(9)	0.507 4(6)	0.687 0(12)	0.690 1(8)
C(B4)	0.9179(7)	-0.0550(13)	0.879 6(9)	0.572 9(7)	0.723 6(11)	0.737 5(8
C(B5)	0.881 1(6)	0.001 5(12)	0.791 8(10)	0.611 9(7)	0.629 5(11)	0.800 7(8)
C(B6)	0.886 8(5)	0.1382(12)	0.790 9(7)	0.602 1(5)	0.509 5(10)	0.760 2(6)
C(B7)	0.850 4(6)	0.197 1(13)	0.705 6(7)	0.638 7(5)	0.415 8(12)	0.822 1(8
C(B8)	0.868 5(5)	0.320 7(14)	0.704 0(7)	0.643 3(5)	0.302 0(11)	0.784 9(7
C(AB)	0.783 8(5)	0.192 0(13)	0.674 9(7)	0.612 2(5)	0.390 6(12)	0.876 9(7
Solvent						
C(1)	0.786(1)	0.381(3)	0.266(2)			
C(2)	0.823(2)	0.368(6)	0.350(3)			
C(3)	0.883(1)	0.295(4)	0.446(2)			
C(4)	0.951(2)	0.313(4)	0.482(3)			
ο	0.840(1)	0.338(3)	0.362(2)			
igin.						

Table 3. Non-hydrogen atom co-ordinates for (3)

Hydrogen-1 n.m.r., carbon-13 n.m.r., and mass spectra were recorded on Hitachi–Perkin-Elmer R-24B (60 MHz), Bruker WP-80, and Hewlett Packard-4986 spectrometers. Phosphorus-31 and lithium-7 n.m.r. were obtained on a Bruker WP-80 or AM 300 spectrometer. Chemical shifts (δ) are reported relative to SiMe₄ (¹H, external), [²H₆]benzene (¹³C), 85% H₃PO₄ (³¹P, external), and aqueous LiNO₃ (⁷Li, external). Elemental analyses were performed by the Canadian Microanalytical Laboratory and the Australian Mineral Development Laboratories.

The ligands tmen and (-)sparteine sulphate were purchased from Aldrich and anhydrous (-)sparteine prepared by treatment of the sulphate with NaOH, followed by filtration and distillation *in vacuo*. LiBuⁿ was purchased from Metallgesellschaft, and PMe₃, PMe₂Ph, PMePh₂, and P(C₆H₄Me-*o*)₃ from Strem. MeC₆H₄PPh₂- o^{37} was prepared according to the literature procedure, and P(O)Me₂Ph by treating PMe₂Ph in hexane with excess 70% H₂O₂ then sublimation *in vacuo*, m.p. 139-140 °C (lit. 140 °C³⁸).

Synthesis of [{Li(tmen)(CH₂PMe₂)}₂], (1).—To a mixture of LiBuⁿ (5.53 cm³, 1.70 mol dm⁻³ in hexane, 9.4 mmol) and tmen (1.03 cm³, 8.85 mmol) at 0 °C was added PMe₃ (1.0 cm³, 9.83

mmol). After 1 d at room temperature volatiles were removed *in vacuo* yielding a white crystalline solid of the *title compound*, 1.56 g, 89% yield, m.p. >310 °C. Crystals for the *X*-ray experiment were obtained by recrystallization from hexane. ¹H N.m.r. (80 MHz, $[^{2}H_{6}]$ benzene) δ 2.23 (12 H, s, NMe), 2.03 (4 H, s, NCH₂), 1.29 (6 H, s, PMe), -0.35 (2 H, s, LiCH₂); ¹³C n.m.r. (20.1 MHz, ¹H decoupled, $[^{2}H_{6}]$ benzene) δ 57.3 (s, NCH₂), 46.4 (s, NMe), 24.5 (d, PMe, J_{CP} 9 Hz), 10.3 (d, PCH₂, J_{CP} 27.5 Hz); ³¹P n.m.r. (32.44 MHz, $[^{2}H_{8}]$ toluene) δ -43.8 (s); ⁷Li n.m.r. (116.3 MHz, $[^{2}H_{8}]$ toluene, ¹H decoupled) δ 1.98 (s, 20 °C), -0.18 (d, J_{LiP} 53.4 Hz; s, -80 °C). Molecular weight (benzene): 197(5), calc. 198.1.

Synthesis of [{Li(tmen)(CH₂PMePh)}₂], (2).—This was prepared according to the literature procedure.¹² Crystals suitable for the X-ray experiment were grown from hexane at -30 °C. ³¹P N.m.r. (121.5 MHz, [²H₈]toluene, ¹H decoupled) $\delta -23.6$ (s, 20 °C; q, -70 °C, J_{LiP} 49.3 Hz); ⁷Li n.m.r. (116.3 MHz, [²H₈]toluene) δ 2.07 (s, 20 °C; d, -70 °C, J_{LiP} 49.3 Hz). Molecular weight (benzene); 234(35), calc. 260.3.

Synthesis of $[{Li(sp)(CH_2PMePh)}_2]$, (3).—(-)Sparteine (4.8 cm³, 21.0 mmol) was added to a solution of LiBu^a (13.1 cm³,

1.7 mol dm⁻³ in hexane, 21.0 mmol) and PMe₂Ph (3.0 cm³, 21.0 mmol) in diethyl ether (20 cm³). After 5 h at room temperature the mixture was cooled to -30 °C and after 3 d the resulting yellow solid of the *title compound* was collected, washed with pentane (3 × 5 cm³), and then dried *in vacuo*, 3.2 g, 40%, m.p. 79 °C (decomp.). ¹H N.m.r. (80 MHz, [²H₆]benzene) $\delta - 0.12$

Table 4. Non-hydrogen atom co-ordinates for

Atom	x	у	z
Li	0.283 5(6)	0.310 1(8)	0.774 9(12)
Р	0.335 67(8)	0.138 74(11)	0.83450(-)*
C(1)	0.405 8(3)	0.177 5(4)	0.735 1(6)
C(2)	0.430 2(4)	0.119 2(5)	0.647 1(7)
C(3)	0.470 3(4)	0.1541(7)	0.556 9(6)
C(4)	0.485 1(4)	0.252 2(7)	0.554 8(7)
C(5)	0.463 2(4)	0.312 0(5)	0.641 6(8)
C(6)	0.422 8(4)	0.278 2(5)	0.737 8(7)
C(7)	0.398 9(3)	0.342 2(5)	0.825 7(8)
Si	0.429 4(1)	0.465 2(1)	0.851 9(3)
C(8)	0.398 7(6)	0.556 9(6)	0.746 6(12)
C(9)	0.529 5(4)	0.480 5(6)	0.860 8(10)
C(10)	0.391 5(5)	0.501 9(7)	0.994 8(10)
C(11)	0.323 0(4)	0.009 8(4)	0.801 5(5)
C(12)	0.375 3(4)	-0.0603(4)	0.826 8(7)
C(13)	0.364 1(5)	-0.1551(6)	0.797 4(7)
C(14)	0.300 5(6)	-0.1819(7)	0.740 5(8)
C(15)	0.249 0(5)	-0.113 9(6)	0.717 1(8)
C(16)	0.260 1(4)	-0.018 5(5)	0.747 0(6)
C(21)	0.378 1(4)	0.135 7(5)	0.975 8(6)
C(22)	0.334 8(5)	0.142 7(6)	1.071 0(7)
C(23)	0.363 6(6)	0.149 7(7)	1.180 3(8)
C(24)	0.437 3(7)	0.145 1(7)	1.192 7(9)
C(25)	0.481 5(6)	0.138 1(8)	1.099 8(9)
C(26)	0.452 3(4)	0.131 3(7)	0.992 1(8)
N(1)	0.179 9(3)	0.346 3(5)	0.829 7(8)
C(101)	0.142 7(6)	0.362 4(10)	0.721 4(12)
C(102)	0.149 0(5)	0.267 5(8)	0.895 4(13)
C(103)	0.174 1(6)	0.431 9(8)	0.897 8(10)
N(2)	0.246 3(4)	0.308 0(5)	0.611 6(6)
C(201)	0.169 1(6)	0.316 4(12)	0.624 9(10)
C(202)	0.277 2(6)	0.390 1(7)	0.552 2(9)
C(203)	0.262 8(6)	0.220 6(8)	0.542 3(8)
* Defines orig	in.		

Synthesis of [Li(tmen){CH(SiMe₃)C₆H₄PPh₂-o}], (4).—To a solution of LiBuⁿ (1.7 cm³, 1.7 mol dm⁻³ in hexane, 2.7 mmol) and tmen (0.38 cm³, 2.5 mmol) was slowly added CH₂(Si-Me₃)C₆H₄PPh₂-o (1.0 g, 2.9 mmol). After 12 h the resulting

Table 6. $Li_2P_2C_2$ ring torsion angles (°) for (1)-(3)

Bond	Li–P	Li–C	Р-С
(1)			
Molecule 1	50.8 *	- 50.1	52.0
Molecule 2	- 55.8 *	55.2	- 57.8
(2)			
Section 1	48.0*	31.1	-66.5
Section 2	51.7*	28.1	-63.2
(3)			
Molecule 1	54.9 *	- 19.2	62.4
Molecule 2	-17.7*	47.7	61.2

* The second atom is in the other section or symmetry-related segment.

Table 7. The lithium environment for (4); r are the Li–N, C, P distances (Å). Other entries in the matrix are the angles (°) subtended at the lithium by the atoms at the head of the relevant row and column

Atom	r	C(7)	N(1)	N(2)
Р	2.65(1)	76.4(4)	117.9(6)	111.0(5)
C(7)	2.25(1)		137.6(7)	124.7(7)
N(1)	2.07(1)			89.2(6)
N(2)	2.04(2)			()

Table 5. Molecular (non-hydrogen) core geometries for (1)--(3); distances in Å, angles in °; the second entry is for the other section of independent molecule

	(1)	(2)	(3)
Li–P	2.593(7), 2.615(6)	2.67(1), 2.61(1)	2.74(2), 2.70(2)
Li-C(1)	2.150(8), 2.141(6)	2.15(1), 2.12(1)	2.21(3), 2.18(3)
Li-N(li, A1)	2.218(5), 2.169(8)	2.17(1), 2.17(2)	2.16(2), 2.10(2)
Li - N(l2, B1)	2.177(8), 2.216(7)	2.14(2), 2.17(1)	2.15(1), 2.13(2)
P-C(1)	1.751(3), 1.754(5)	1.730(8), 1.755(7)	1.77(1), 1.78(1)
P-C(2)	1.825(5), 1.844(5)	1.845(7), 1.836(8)	1.86(2), 1.83(1)
P-C(3)	1.853(5), 1.842(4)	1.845(8), 1.857(9)	1.87(2), 1.85(2)
P-Li-C(1)	110.7(2), 108.2(3)	112.9(5), 115.2(5)	108.3(6), 106.2(7)
P-Li-N(l1, A1)	110.0(3), 109.7(3)	113.1(5), 116.6(6)	128.3(8), 128.5(10)
$P-Li-N(l_2, B1)$	109.7(3), 109.5(2)	106.3(6), 106.1(5)	107.3(10), 105.6(8)
C(1)-Li-N(l1, A1)	113.0(4), 112.1(3)	120.9(7), 116.3(7)	111.0(11), 114.9(10)
C(1) - Li - N(l2, B1)	126.4(3), 130.2(3)	114.6(5), 113.1(6)	115.6(12), 111.0(10)
$N(l_1, A_1)-L_1-N(l_2, B_1)$	83.7(2), 84.1(3)	85.2(5), 85.1(5)	84.5(6), 87.8(8)
Li-P-C(1)	114.4(2), 112.7(2)	101.8(4), 102.6(3)	107.3(5), 108.8(6)
Li-P-C(2)	106.4(3), 105.6(2)	120.9(3), 120.3(4)	116.7(7), 117.7(6)
Li-P-C(3)	123.5(2), 125.3(2)	121.4(3), 120.0(4)	121.9(5), 119.6(6)
C(1) - P - C(2)	103.4(2), 102.7(3)	103.3(3), 103.2(4)	102.6(6), 102.5(6)
C(1) - P - C(3)	109.3(2), 109.8(2)	112.2(4), 111.9(4)	111.8(7), 109.5(6)
C(2) - P - C(3)	96.3(3), 96.6(2)	96.3(3), 97.9(4)	94.9(7), 97.0(6)
P-C(1)-Li	113.2(3), 111.8(3)	108.6(5), 109.1(5)	113.10(9), 120.8(8)

⁽² H, d, CH₂, J_{PH} 2.8 Hz), 0.8 — 3.1 (29 H, m, sp and PMe), 7.2 (3 H, m, Ph), 7.95 (2 H, m, Ph); ¹³C n.m.r. (20.1 MHz, [²H₆]benzene, ¹H decoupled) δ 19.4 (d, Ph, J_{CP} 3.4 Hz), 35.6 (d, CH₂, J_{CP} 3.4 Hz), 124.7 (Ph), 127.2 (d, Ph, ³ J_{CP} 3.4 Hz), 130.4 (d, Ph, ² J_{CP} 11.4 Hz), 158.1 (d, Ph, J_{CP} 29.8 Hz); 64, 8.1, 14.2, 25.2, 25.7, 28.8, 29.8, 47.5, 54.1, 57.3, 61.4 (C^{2,3,15,9,10,1,8,4,6,11,13}, sp), 59.9 (C^{7,14}, sp), 67.5 (C^{7a,14a}, sp); ³¹P n.m.r. (121.5 MHz, [²H₈]toluene, ¹H decoupled) δ – 22.3 (s, 20 °C; q, – 53 °C, J_{LiP} 44.0 Hz); ⁷Li n.m.r. (116.63 MHz, [²H₈]toluene) δ – 1.3 (s, 20 °C; d, – 53 °C, J_{LiP} 44.0 Hz).

orange prisms of the *title compound* (suitable for the X-ray experiment) were collected and washed with pentane (2 × 5 cm³) then dried *in vacuo*, 1.1 g, 91%, m.p. 148 °C. ¹H N.m.r. (60 MHz, [²H₆]benzene) δ 0.31 (9 H, s, SiMe), 1.70 (1 H, s, SiCH), 1.80 (4 H, s, CH₂N), 1.90 (12 H, s, MeN), 7.3 (14 H, m, Ph and C₆H₄); ¹³C n.m.r. (20.1 MHz, [²H₆]benzene, ¹H decoupled) δ 2.9 (SiMe), 45.9 (MeN), 57.1 (CH₂N) 110.3–159.1 (Ph and C₆H₄); ³¹P n.m.r. (121.5 MHz, [²H₆](benzene, ¹H decoupled) δ –14.7.

Synthesis of [{Li(tmen)(CH₂PPh₂)}₂], (5).—This was prepared according to the literature procedure.^{12 31}P N.m.r. (121.5 MHz, [²H₈]toluene, ¹H decoupled) δ 2.29 (s, 20 °C); ⁷Li n.m.r. (116.3 MHz, [²H₈]toluene) δ 2.05 (s, 20 °C; d, -70 °C, J_{LiP} 47.3 Hz). Molecular weight (benzene); 341(50), calc. 395.4.

Synthesis of [Li(tmen)(CH₂C₆H₄PPh₂-o)], (6).— MeC₆H₄PPh₂-o (1.03 g, 3.7 mmol) was treated with LiBuⁿ (2 cm³, 1.7 mol dm⁻³ in hexane, 3.4 mmol) then tmen (0.5 cm³, 3.3 mmol) at 0 °C. The resulting orange crystals of the *title compound* were collected and washed with hexane (3 × 5 cm³) then dried *in vacuo*, 1 g, 72%, m.p. 146—148 °C. ¹H N.m.r. (60 MHz, [²H₆]benzene) δ 1.95 (16 H, s, CH₂MeN), 2.42 (2 H, s, CH₂Li), 2.7 (14 H, m, Ph and C₆H₄); ¹³C n.m.r. (20.1 MHz, [²H₆]benzene, ¹H decoupled) δ 3.35 (CH₂Li), 46.0 (MeN), 57.9 (CH₂N), 127.3—135.5 (Ph and C₆H₄); ³¹P n.m.r. (121.5 MHz, [²H₆]benzene, ¹H decoupled) – 15.8.

Synthesis of CH₂(SiMe₃)C₆H₄PPh₂-o, (7).—LiBuⁿ (4 cm³, 1.7 mol dm⁻³ in hexane, 6.4 mmol), tmen (0.94 cm³, 6.2 mmol), and MeC₆H₄PPh₂-o (1.76 g, 6.4 mmol) were mixed at 0 °C. The resulting orange solid was dissolved in hexane (50 cm³) and SiMe₃Cl (1 cm³, 8 mmol) added. After 12 h at room temperature the solution was filtered and volatiles removed *in vacuo*. The *title compound* was distilled as a colourless liquid, 1.76 g, 79%, b.p. 158—160 °C at 10^{-2} mmHg (Found: C, 75.85; H, 7.20. C₂₂H₂₅PSi requires C, 75.80; H, 7.35%). ¹H N.m.r. (60 MHz, [²H₁]chloroform) δ 0.1 (9 H, s, SiMe), 2.4 (2 H, s, CH₂), 7.2 (14 H, m, Ph and C₆H₄); ¹³C n.m.r. (20.1 MHz, [²H₁] chloroform, ¹H decoupled) δ 3.0 (SiMe), 26.3 (d, CH₂, J_{CP} 21.7 Hz), 125.6— 146.7 (Ph and C₆H₄); ³¹P n.m.r. (121.5 MHz, [²H₁]chloroform, ¹H decoupled) δ -14.3.

Synthesis of CH(SiMe₃)₂C₆H₄PPh₂-o, (8).—To an icecooled mixture of (4) (4 g, 8.2 mmol) in hexane (20 cm³) was added SiMe₃Cl (1.3 cm³, 9.8 mmol). After 12 h at room temperature volatiles were removed *in vacuo* and the *title compound* crystallized as colourless crystals from ethanol, 1.95 g, 56.4%, m.p. 105—107 °C (Found: C, 71.4; H, 7.85. C₂₅-H₃₃PSi₂ requires C, 71.40; H, 8.00%). ¹H N.m.r. (60 MHz, [²H₁]chloroform) δ 0.27 (18 H, s, SiMe), 2.70 (1 H, d, Si₂CH, *J*_{HP} 7 Hz), 6.9 (14 H, m, Ph and C₆H₄); ¹³C n.m.r. (20.1 MHz, [²H₁]chloroform, ¹H decoupled) δ 1.1 (SiMe), 26.9 (d, *J*_{CP} 22 Hz), 124.7—150.6 (s, Ph and C₆H₄); ³¹P n.m.r. (32.44 MHz, [²H₆]benzene, ¹H decoupled) δ – 17.8 (s).

Synthesis of $P(C_6H_4CH_2SiMe_3-o)_3$, (9).—To a solution of $P(C_6H_4Me-o)_3$ (2.0 g, 6.6 mmol) and tmen (3.3 cm³, 22 mmol) in hexane (200 cm³) was added LiBuⁿ (14 cm³, 1.6 mol dm⁻³ in hexane, 22 mmol). After 15 h SiMe_3Cl (4.2 cm³, 33 mmol) in hexane (20 cm³) was added to the resulting deep red solution at 0 °C. The mixture was stirred for 2 h, filtered then the volatiles removed *in vacuo*. The *title compound* was crystallized as colourless crystals from methanol, 2.6 g, 76%, m.p. 156 °C (Found: C, 69.55; H, 8.90. C₃₀H₄₅PSi₃ requires C, 69.15; H, 8.70%). ¹H N.m.r. (60 MHz, [²H₁]chloroform) δ 0.01 (27 H, s, SiMe), 2.2 (6 H, s, CH₂Si), 6.7—7.0 (12 H, m, C₆H₄); ¹³C n.m.r. (20.1 MHz, [²H₁]chloroform, ¹H decoupled) δ –0.6 (SiMe),

25.8 (d, CH₂Si, J_{CP} 17.2 Hz), 125.0—145.8 (C₆H₄); ³¹P n.m.r. (121.5 MHz, [²H₁]chloroform, ¹H decoupled) δ –23.1.

Synthesis of $P[C_6H_4CH(SiMe_3)_2-o]_3$, (10).—The procedure was as described for the synthesis of (9). Yield 62%, m.p. 255 °C (Found: C, 63.60; H, 9.15; P, 4.60. $C_{39}H_{69}PSi_6$ requires C, 63.60; H, 9.45; P, 4.20%). ¹H N.m.r. (60 MHz, [²H₁]chloroform) δ -0.11 (27 H, s, SiMe), 0.26 (27 H, s, SiMe), 2.26 (3 H, d, CHSi₂, J_{HP} 7 Hz), 7.0 (12 H, m, C_6H_4); ¹³C n.m.r. (20.1 MHz, [²H₁]chloroform, ¹H decoupled) δ 0.8, 1.6 (SiMe), 25.7 (d, CHSi₂, J_{CP} 13.7 Hz), 124.1—149.3 (C_6H_4); ³¹P n.m.r. (121.5 MHz, [²H₁]chloroform, ¹H decoupled) δ -22.4.

Synthesis of [Li(sp){CH₂P(O)MePh}] (11).—P(O)Me₂Ph (0.8 g, 5.2 mmol) was added to a solution of LiBuⁿ (3.1 cm³, 1.7 mol dm⁻³, 5.3 mmol) and sparteine (1.2 cm³, 5.2 mmol). After 18 h at room temperature the solvent was removed *in vacuo*. The resulting pale yellow solid of the *title compound* was washed with pentane (3 × 10 cm³) and dried *in vacuo*, 1.17 g, 57%, m.p. 74—77 °C (decomp.). ¹H N.m.r. (300 MHz, [²H₆]benzene) δ 0.5—2.8 (31 H, m, sp and PMe, CH₂), 7.0 (3 H, m, Ph), 8.1 (2 H, m, Ph); ¹³C n.m.r. (75.5 MHz, [²H₆]benzene, ¹H decoupled) δ 21.0 (d, PMe, J_{CP} 68.1 Hz), 30.8 (d, PCH₂, J_{CP} 64.9 Hz), 127.1, 131.4 (Ph) 143.6 (Ph); 23.0 (C^{2.3}, sp), 25.1 (C^{9.10}, sp), 26.2, 28.1 (C^{1.8}, sp), 29.6 (C^{1.5}, sp), 33.6, 36.9 (C^{7.14}, sp), 54.0, 55.7, 56.5, 62.3 (C^{4.6,11,13}, sp), 64.3, 66.5 (C^{7a.14a}, sp); ³¹P n.m.r. (121.5 MHz, [²H₆]benzene, ¹H decoupled) δ 52.8.

Synthesis of P(O)MePhPrⁱ.—EtI (1.0 cm³, 12.4 mmol) was added to a stirred hexane (20 cm³) solution of (11) (1.17 g, 5.2 mmol) at -95 °C and the mixture warmed to room temperature over 18 h. The solvent was removed *in vacuo* and the *title compound* distilled as a colourless liquid, b.p. 135 °C, 0.1 mmHg, which solidified, m.p. 58—60 °C, lit.²⁵ 57—58 °C; α (589.3 nm, 16 g dm⁻³ in MeOH, 20 °C) -2.9° .

Crystallography.—Unique data sets were measured at 295 K within a preset $2\theta_{max}$. limit determined from the extent of the data using a Syntex $P\bar{1}$ four-circle diffractometer fitted with a monochromatic Mo- K_{α} radiation source ($\lambda = 0.710 \ 6_9 \ \text{Å}$) and operating in conventional $2\theta/\theta$ scan mode. N Independent reflections were obtained, N_0 with $I > 3\sigma(I)$ [or $> 2\sigma(I)$ for (3)] being considered 'observed' and used in the full-matrix leastsquares refinement without absorption correction after solution of the structures by direct methods. Anisotropic thermal parameters were refined for the non-hydrogen atoms; $(x, y, z, U_{iso})_{\rm H}$ were included constrained at idealized values. R, R' on |F|are quoted at convergence; reflection weights were $[\sigma^2(F_o) + 0.0005(F_o)^2]^{-1}$. Neutral complex scattering factors were used; ³⁹ computation used the XTAL⁴⁰ program system implemented on a Perkin-Elmer 3240 computer.

Additional material available from the Cambridge Crystallographic Data Centre comprises H-atom co-ordinates, thermal parameters, and remaining bond lengths and angles.

Crystal Data.—For (1). (C₉H₂₄LiN₂P)₂, M = 396.4, triclinic, space group PI (C¹₁, no. 2), a = 14.918(7), b = 11.567(5), c = 9.621(4) Å, $\alpha = 113.94(3)$, $\beta = 91.92(3)$, $\gamma = 109.79(3)^{\circ}$, U = 1 399 Å³, $D_c(Z = 2) = 0.94$ g cm⁻³, F(000) = 440, $\mu_{Mo} = 1.7$ cm⁻¹, $2\theta_{max.} = 50^{\circ}$, N = 4 501, $N_0 = 3 019$; R = 0.059, R' = 0.078.

For (2). $(C_{14}H_{26}LiN_2P)_2$, M = 520.6, triclinic, space group $P\overline{1}$, a = 16.10(1), b = 11.96(1), c = 9.382(8) Å, $\alpha = 98.87(7)$, $\beta = 97.38(6)$, $\gamma = 101.57(6)^\circ$, U = 1 724(2) Å³, $D_c(Z = 2) = 1.00$ g cm⁻³, F(000) = 568, $\mu_{Mo} = 1.5$ cm⁻¹, $2\theta_{max} = 45^\circ$, N = 4 519, $N_0 = 2.240$; R = 0.058, R' = 0.056.

For (3). $(C_{23}H_{36}LiN_2P)_2OEt_2$, M = 831.1, monoclinic, space group $C_2(C_2^3, \text{ no. 5})$, a = 26.097(7), b = 11.517(9), c =

19.506(5) Å, $\beta = 122.50(2)^{\circ}$, U = 4.945(6) Å³, D_{c} (Z = 4) = 1.32 g cm⁻³, F(000) = 1.816, $\mu_{Mo} = 1.5$ cm⁻¹, $2\theta_{max.} = 50^{\circ}$, N = 3.945, $N_{0} = 2.100$; R = 0.083, R' = 0.072.

For (4). $C_{28}H_{40}LiN_2PSi$, M = 470.6, orthorhombic, space group $Pna2_1$ (C_{2v}^9 , no. 33), a = 18.395(8), b = 13.825(5), c = 11.737(5) Å, U = 2.985(2) Å³, $D_c(Z = 4) = 1.05$ g cm⁻³, $F(000) = 1.016, \mu_{Mo} = 2.1 \text{ cm}^{-1}, 2\theta_{max} = 45^\circ, N = 2.078, N_0 = 1.222; R = 0.039, R' = 0.043$. [For this compound, $(x, y, z)_{\rm H}$ were refined for the non-methyl hydrogen atoms.]

Acknowledgements

We are grateful to the Australian Research Grants Scheme for grants in support of this work.

References

- 1 S. I. Bailey, D. Colgan, L. M. Engelhardt, W.-P. Leung, R. I. Papasergio, C. L. Raston, and A. H. White, *J. Chem. Soc.*, *Dalton Trans.*, 1986, 603.
- 2 L. M. Engelhardt, G. E. Jacobsen, C. L. Raston, and A. H. White, J. Chem. Soc., Chem. Commun., 1984, 220.
- 3 (a) P. B. Hitchcock, M. F. Lappert, P. P. Power, and S. J. Smith, J. Chem. Soc., Chem. Commun., 1984, 1669; (b) R. A. Jones, A. L. Stuart, and T. C. Wright, J. Am. Chem. Soc., 1983, 105, 7459; (c) R. A. Bartlett, M. M. Olmstead, and P. P. Power, Inorg. Chem., 1986, 25, 1243; (d) A. Schmidpeter, G. Burget, and W. S. Sheldrick, Chem. Ber., 1985, 118, 3849; (e) E. Hey, P. B. Hitchcock, M. F. Lappert, and A. K. Rai, J. Organomet. Chem., 1987, 325, 1; (f) D. M. Anderson, P. B. Hitchcock, M. F. Lappert, W.-P. Leung, and J. A. Zora, *ibid.*, 1987, 333, C13.
- 4 P. Brooks, D. C. Craig, M. J. Gallagher, A. D. Rae, and A. Sarroff, J. Organomet. Chem., 1987, 323, C1.
- 5 L. M. Engelhardt, J. MacB. Harrowfield, M. F. Lappert, I. A. MacKinnon, B. H. Newton, C. L. Raston, B. W. Skelton, and A. H. White, J. Chem. Soc., Chem. Commun., 1986, 846.
- 6 (a) H. H. Karsch, L. Weber, D. Wewers, R. Boese, and G. Muller, Z. Naturforsch., Teil B, 1984, 39, 1518; (b) H. H. Karsch and G. Muller, J. Chem. Soc., Chem. Commun., 1984, 569.
- 7 H. H. Karsch, A. Appelt, B. Deubelly, and G. Muller, J. Chem. Soc., Chem. Commun., 1987, 1033.
- 8 D. J. Brauer, S. Hietkamp, and O. Stelzer, *J. Organomet. Chem.*, 1986, **299**, 137.
- 9 H. H. Karsch, A. Appelt, and G. Muller, J. Chem. Soc., Chem. Commun., 1984, 1415; Organometallics, 1985, 4, 1624.
- R. Appel, G. Haubrich, and F. Knoch, *Chem. Ber.*, 1984, 117, 2063.
 H. H. Karsch and H. Schmidbaur, Z. Naturforsch., Teil B, 1977, 32, 762.
- 12 D. J. Peterson, J. Organomet. Chem., 1967, 8, 199.
- 13 (a) P. v. R. Schleyer, *Pure Appl. Chem.*, 1984, 56, 151; (b) W. N. Setzer and P. v. R. Schleyer, *Adv. Organomet. Chem.*, 1985, 24, 353; (c) P. v. R. Schleyer, T. Clark, A. J. Kos, G. W. Spitznagel, C. Rohde, D. Arad, K. N. Houk, and N. G. Rondan, *J. Am. Chem. Soc.*, 1984, 106, 6467; (d) J. P. Ritchie and S. M. Bachrach, *ibid.*, 1987, 109, 5909.
- 14 R. Amstutz, T. Laube, W. B. Schweizer, D. Seebach, and J. D. Dunitz, *Helv. Chim. Acta*, 1984, 67, 224.
- 15 H. Nozaki, T. Arantani, T. Toraya, and R. Noyori, *Tetrahedron*, 1971, 27, 905.

- 16 L. M. Engelhardt, W.-P. Leung, C. L. Raston, G. Salem, P. Twiss, and A. H. White, J. Chem. Soc., Dalton Trans., 1988, 2403.
- (a) Y. Okamoto, T. Takeda, and K. Hatada, *Chem. Lett.*, 1984, 757;
 (b) G. Wulff, R. Sczepan, and A. Steigel, *Tetrahedron Lett.*, 1986, 27, 1991.
- 18 G. Longoni, P. Chini, F. Canziani, and P. Fantucci, Chem. Commun., 1971, 470.
- 19 For example, (a) S. Jousseaume, J. G. Duboudin, and M. Petraud, J. Organomet. Chem., 1982, 238, 171; (b) H. H. Karsch, A. Appelt, F. H. Kohler, and G. Muller, Organometallics, 1985, 4, 231.
- 20 For example, (a) H. H. Karsch, Angew. Chem., Int. Ed. Engl., 1982, 21, 921; (b) S. J. Young, H. Hope, and N. E. Schore, Organometallics, 1984, 3, 1585; (c) H. H. Karsch, G. Muller, and C. Kruger, J. Organomet. Chem., 1984, 273, 195; (d) F. Senocq, M. Basso-Bert, R. Choukroun, and D. Gervais, *ibid.*, 1985, 297, 155.
- 21 M. Wada, J. Chem. Soc., Chem. Commun., 1981, 680.
- 22 B. Gordon and J. E. Loftus, J. Org. Chem., 1986, 51, 1618.
- 23 K. M. Pietrusiewicz, M. Zablocka, and J. Monkiewicz, J. Org. Chem., 1984, 49, 1522.
- 24 G. E. Hartwell and A. Allerhand, J. Am. Chem. Soc., 1971, 93, 4415.
- 25 (a) F. W. Wehrli, Annu. Rep. NMR Spectrosc., 1979, 9, 125, (b) R. H. Cox, H. W. Terry, and L. W. Harrison, Tetrahedron Lett., 1971, 4815.
- 26 F. W. Wehrli, Org. Magn. Reson., 1978, 11, 106.
- 27 G. C. Levy, J. D. Cargioli, P. C. Juliano, and T. D. Mitchell, J. Am. Chem. Soc., 1973, 95, 3445.
- 28 (a) R. E. Mulvey, K. Wade, D. R. Armstrong, G. T. Walker, R. Snaith, W. Clegg, and D. Reed, *Polyhedron*, 1987, 6, 987; (b) I. J. Colquhoun, H. C. E. McFarlane, and W. McFarlane, *J. Chem. Soc., Chem. Commun.*, 1982, 220; (c) G. Hasselkuss, S. Hietkamp, and O. Stelzer, Z. Anorg. Allg. Chem., 1986, 534, 50.
- 29 (a) T. Kauffmann, R. Joussen, N. Klas, and A. Vahrenhorst, *Chem. Ber.*, 1983, **116**, 473; (b) T. Kauffmann, F. Steinseifer, and N. Klas, *Chem. Ber.*, 1985, **118**, 1039.
- 30 E. Lindner, F. Bouachir, and W. Hiller, Z. Naturforsch., Teil B, 1982, 37, 1146.
- 31 H. H. Karsch, A. Appelt, and G. Muller, Angew. Chem., Int. Ed. Engl., 1986, 25, 823.
- 32 W. Honle, H. G. v. Schnering, A. Schmidpeter, and G. Burget, Angew. Chem., Int. Ed. Engl., 1984, 23, 817.
- 33 C. Eaborn, P. B. Hitchcock, J. D. Smith, and A. C. Sullivan, J. Chem. Soc., Chem. Commun., 1983, 1390.
- 34 M. F. Lappert, L. M. Engelhardt, C. L. Raston, and A. H. White, J. Chem. Soc., Chem. Commun., 1982, 1323.
- 35 M. F. Lappert, C. L. Raston, B. W. Skelton, P. Twiss, and A. H. White, unpublished work.
- 36 L. M. Engelhardt, W.-P. Leung, C. L. Raston, P. Twiss, and A. H. White, J. Chem. Soc., Dalton Trans., 1984, 321.
- 37 (a) W.-P. Leung, C. L. Raston, B. W. Skelton, and A. H. White, J. Chem. Soc., Dalton Trans., 1984, 1801; (b) L. M. Engelhardt, W.-P. Leung, C. L. Raston, and A. H. White, *ibid.*, 1985, 337.
- 38 M. A. Bennett and P. A. Longstaff, J. Am. Chem. Soc., 1969, 91, 6266.
- 39 J. A. Ibers and W. C. Hamilton (eds.), 'International Tables for X-Ray Crystallography,' Kynoch Press, Birmingham, 1974, vol. 4.
- 40 J. M. Stewart and S. R. Hall (eds.), 'The XTAL System of Crystallographic Programs: User's Manual,' Technical Report TR-901, Computer Science Centre, University of Maryland, 1983.

Received 1st December 1987; Paper 7/2125